archive-edu.com » EDU » I » ILLINOIS.EDU

Total: 27

Choose link from "Titles, links and description words view":

Or switch to "Titles and links view".
  • Tony Wong, UIUC
    Adam Leroy NRAO and Erik Rosolowsky UBC Group members Kijeong Yim David Rebolledo Rui Xue Studies of the ISM in the Large Magellanic Cloud Making use of data from Australian radio facilities as well as space based UV optical and IR telescopes we have been investigating several overlapping issues including the relationship between atomic and molecular gas the internal structure of star forming molecular clouds and the origin of the radio far infrared correlation External collaborators include Prof Yasuo Fukui and his group at Nagoya University Dr Juergen Ott NRAO and Ph D candidate Annie Hughes Swinburne U Local collaborators at UIUC include You hua Chu Robert Gruendl Leslie Looney and Jonathan Seale Group members Dan Welty Rui Xue Molecular line mapping of GMCs in the Galaxy Using the Mopra telescope we have been obtaining fully sampled maps of southern giant molecular clouds GMCs in CO 13 CO and C 18 O These maps provide a deeper view of cloud structure than CO maps alone and can be used to investigate current issues in molecular cloud evolution including the role of turbulence Current Projects The ISM in Edge on Galaxies Graduate student Kijeong Yim is examining a sample of edge on spirals with CO HI and Spitzer imaging to study the structure of disks and its relation to star formation We are working to expand this sample in collaboration with Richard Rand UNM and others Connecting HI and CO line profiles and Tully Fisher relations Graduate student David Rebolledo is examining how gas distributions and kinematics affect integrated HI and CO line profiles with an eye towards interpreting the integrated spectra of distant galaxies MAGMA the Magellanic Mopra Assessment We are conducting a CO survey of the Large and Small Magellanic Clouds that achieves the best available angular resolution on

    Original URL path: http://mmwave.astro.illinois.edu/ (2015-10-10)
    Open archived version from archive


  • CARMA STING Data Reduction Information
    c0104 10D 115NGC6951 2 4 1 0 128 B central ring D 08JUL12 c0104 10D 115NGC6951 4 5 9 0 100 B ring disk D 08JUL14 c0104 10D 115NGC6951 5 5 9 0 095 B ring disk D 08JUL15 c0104 10D 115NGC6951 7 4 6 0 152 B no det E 09JUL20 c0395 10E 115NGC695 1 5 7 0 070 B good C D all 0 037 nice Season 2 Galaxies Jul Dec 2008 c0192 NGC 337 Array Date Files Length hr RMS Jy bm Comments D 08JUL21 c0192 1D 115NGC337 1 5 9 0 096 B no det D 08JUL30 c0192 1D 115NGC337 2 6 9 0 049 B off ctr blob D 08JUL31 c0192 1D 115NGC337 4 5 1 0 044 B off ctr blob D 08AUG08 c0192 1D 115NGC337 5 3 1 0 070 B no det D 08SEP07 c0192 1D 115NGC337 6 4 4 0 063 A marginal C 08OCT24 c0192 1C 115NGC337 1 4 1 0 041 A no det C 08OCT26 c0192 1C 115NGC337 2 3 8 0 044 A no det C 09MAY10 c0297I 3C 115NGC337 1 5 7 0 043 B no det C 09MAY12 c0297I 3C 115NGC337 2 2 5 0 054 A no det C 09MAY18 c0297I 3C 115NGC337 3 4 3 0 063 B no det C 09MAY23 c0297I 3C 115NGC337 4 3 9 0 079 B no det C D all 0 017 peak SE of center NGC 3949 Array Date Files Length hr RMS Jy bm Comments D 08AUG16 c0192I 6D 115NGC394 3 4 6 0 113 B poor data no det D 08AUG19 c0192I 6D 115NGC394 4 4 9 0 090 B marginal E 08OCT03 c0192I 6E 115NGC394 2 3 6 2 0 075 good detection C 08NOV06 c0192I 6C 115NGC394 1 6 3 0 034 B no det C 08NOV08 c0192I 6C 115NGC394 2 4 1 0 047 B no det C 09OCT12 c0395V 5C 115NGC394 1 7 2 0 053 B no det C 09OCT17 c0395V 5C 115NGC394 3 4 1 0 055 B no det D E 8 19 10 3 0 056 good detection NGC 4536 Array Date Files Length hr RMS Jy bm Comments D 08JUL25 c0192B 5D 115NGC453 4 4 0 0 049 A compact disk D 08JUL29 c0192B 5D 115NGC453 5 4 1 0 045 D poor phases D 08AUG02 c0192B 5D 115NGC453 6 3 7 0 061 B compact disk C 09APR24 c0297 4C 115NGC453 1 4 9 0 057 B detected C 09APR26 c0297 4C 115NGC453 2 3 7 0 044 A detected E 09JUL19 c0395 9E 115NGC453 1 6 1 0 080 B good C D all 0 024 good det Season 3 Galaxies Jan Jun 2009 c0297 NGC 772 Array Date Files Length hr RMS Jy bm Comments D 09FEB22 c0297B 7D 115NGC772 1 7 4 0 048 B v 2422 good det D 09FEB23 c0297B 7D 115NGC772 2 4 8 0 059 C v 2422 good det D 09FEB27 c0297B 7D 115NGC772 5 7

    Original URL path: http://mmwave.astro.illinois.edu/sting/ (2015-10-10)
    Open archived version from archive

  • ASTR 210 Syllabus
    200 100 pts each Final Exam 250 Total Points 1000 The point total will be converted to a percentage with A s corresponding to 90 100 B s corresponding to 80 89 C s corresponding to 70 79 and D s corresponding to 60 69 Pluses and minuses will be used Assignments Regular assignments are an important part of the course helping to reinforce concepts covered in the lectures and textbook Online quizzes accessed through the course web page These consist of multiple choice questions and must be taken on a computer with web access You may take the quiz up to 2 times BEFORE its due date usually Wednesdays at 11am and you will be credited with your higher score We recommend taking quizzes by yourself without referring to the textbook or lecture notes it s a good way to prepare for exams Quizzes will usually be available online on Moodle a week before the due date Homework assignments accessed through the course web page These will consist of problems and short answer questions and are due in class on Fridays Handwritten solutions are acceptable but should be legible Credit will only be given to well explained answers and all important steps in a calculation must be shown As a confirmation of receipt homeworks received on time will be credited with a 1 point grade in Moodle before 5pm on the due date Computational Project Computers are essential tools for modern astrophysics and you will undertake a project that requires data analysis on a computer The project will explore class topics in greater depth and make use of the same data that astronomers typically obtain The exercise can be completed using Microsoft Excel available from the campus webstore or OpenOffice Observing Project The observing project involves recording the Sun s position near the western horizon on two different days spaced about two weeks apart and completing a short exercise on comparing your observations with predictions Because the observations must be made at different epochs some advanced planning is needed Keep a copy of your work You are strongly urged to make a scan or photocopy of anything you hand in or keep a copy of any electronic file This is to protect you in case a situation arises in which there is disagreement about whether or not an assignment has been submitted Rules of Etiquette For the benefit of your fellow students and your instructor you are expected to follow these basic rules of decorum Show up for class on time If you must be late on a regular basis please inform the instructor Turn off your cell phone before class begins You may use a laptop or tablet only to take notes You should not be checking your email messaging your friends or browsing the internet Do not leave class early and do not rustle papers or pack up bags in preparation for leaving before class is dismissed Be attentive in class Do not use headphones read newspapers

    Original URL path: http://mmwave.astro.illinois.edu/teach/syllabus.html (2015-10-10)
    Open archived version from archive

  • CARMA Data Quality Analysis Script
    218 252 250 NGC4254 033051 5 124551 7 9 0 66 262 250 234 246 245 252 225 185 244 242 252 227 217 250 249 3C274 034106 5 125608 4 2 0 64 270 255 239 253 247 256 227 188 250 244 259 230 221 257 253 3C273 034403 5 125905 9 2 0 54 289 273 256 271 267 273 245 202 268 261 276 251 239 275 274 NGC4254 034637 5 130140 3 10 0 65 268 253 237 250 249 254 225 187 248 238 256 229 219 253 251 NGC4254 035742 0 131246 6 9 0 64 271 254 238 251 248 255 226 188 246 242 254 231 220 256 255 3C274 040757 0 132303 3 2 0 63 269 255 239 253 250 257 227 188 248 237 257 232 219 256 254 3C273 041053 5 132600 3 2 0 52 294 274 257 272 268 276 248 202 270 256 277 250 240 276 270 NGC4254 041329 0 132836 2 10 0 62 268 254 239 251 250 255 226 188 250 235 259 229 221 255 249 NGC4254 042434 0 133943 0 9 0 61 274 253 237 251 249 254 228 187 248 232 255 229 219 253 252 3C274 043447 5 134958 2 2 0 59 276 255 239 252 250 256 227 189 252 237 259 231 220 257 255 3C273 043742 5 135253 7 2 0 50 297 276 258 272 270 277 248 203 270 264 282 252 242 276 276 NGC4254 044012 0 135523 6 10 0 59 276 258 241 255 251 258 231 191 253 239 260 233 223 258 255 NGC4254 045116 0 140629 4 9 0 57 280 259 243 256 255 260 232 192 256 240 261 236 223 259 258 3C274 050131 0 141646 1 2 0 56 282 262 245 258 259 263 234 194 259 245 263 238 228 263 261 3C273 050424 0 141939 6 2 0 47 310 285 268 282 280 286 257 210 280 275 290 264 250 286 285 3C273 051419 5 142936 7 2 0 45 312 290 272 287 286 293 263 214 287 284 294 268 254 290 289 NGC4254 051647 5 143205 1 10 0 53 291 267 250 264 262 269 241 198 263 254 270 245 233 267 268 NGC4254 052752 0 144311 4 9 0 51 294 270 254 267 265 273 242 200 268 257 273 249 234 272 268 3C274 053803 5 145324 6 2 0 50 295 272 256 270 270 275 246 202 270 260 277 251 237 273 271 3C273 054056 0 145617 6 2 0 41 323 298 280 296 291 300 273 220 297 289 299 279 262 299 296 NGC4254 054324 0 145846 0 10 0 48 301 275 258 271 268 277 246 205 274 271 278 256 8682 275 277 NGC4254 055428 0 150951 8 9 0 46 307 282 264 279 276 283 257 209 278 268 286 262 244 282 281 3C274 060440 0 152005 5 2 0 45 310 285 267 281 279 287 258 210 281 277 289 264 247 285 274 3C273 060730 5 152256 4 2 0 37 345 321 302 318 316 323 295 237 321 316 325 305 285 322 314 NGC4254 061004 5 152530 9 10 0 43 313 292 273 288 287 293 267 216 291 278 296 273 255 293 287 NGC4254 062109 5 153637 7 5 0 41 326 301 282 297 292 302 275 222 301 290 305 283 264 301 293 3C273 062722 5 154251 7 2 0 33 366 343 321 340 331 344 314 252 346 341 345 328 307 344 330 Then you get some information about the purpose of each source as recorded in the MIRIAD file and the roles that the person running quality actually assigned to each source usually but not always the same Also reported are the number of NOISE integrations since these are discarded from the listobs output for clarity but you should make sure there are some and the chosen reference antenna for selfcal Then the csflag task is run to flag shadowed data the number of flagged visibilities is reported Source MARS has purpose BF Source 3C273 has purpose G Source NGC4254 has purpose S Source 3C274 has purpose O sources NGC4254 3C274 gaincals 3C273 passcals 3C273 fluxcal MARS There were 18 NOISE integrations Using 9 as the reference antenna csflag Processed 191520 records flagged 0 O H C 0 0 0 A summary of project times and correlator setups is then given The total project time is basically the time elapsed during the project actually an underestimate since initial setup and tuning occurs before the MIRIAD file starts being written The total observe time is the total time spent integrating on the sources listed Note that if a source has purpose O and is not included as a source or calibrator it is not included in the total observe time Also if the frequency setup changes during the observation this will not be reflected in the correlator setup listing Total project time 6 2 hrs from start to finish Total observe time 0 08 hrs for MARS Total observe time 0 53 hrs for 3C273 Total observe time 0 40 hrs for 3C274 Total observe time 4 05 hrs for NGC4254 Total observe time 5 06 hrs for entire track Correlator setup for gain calibrators 1 110 170 0 468750 GHz 2 110 062 0 061523 GHz 3 110 010 0 061523 GHz 4 114 203 0 468750 GHz 5 114 311 0 061523 GHz 6 114 363 0 061523 GHz Correlator setup for sources 1 110 170 0 468750 GHz 2 110 062 0 061523 GHz 3 110 010 0 061523 GHz 4 114 203 0 468750 GHz 5 114 311 0 061523 GHz 6 114 363 0 061523 GHz Using window 1 BW 468 MHz for gain

    Original URL path: http://mmwave.astro.illinois.edu/quality_help/ (2015-10-10)
    Open archived version from archive

  • MAGMA Project
    detected by NANTEN for mapping at resolutions of 1 arcminute 15 pc or better Over most of the mapped region both the CO and 13 CO lines have been observed History and Methodology MAGMA was made possible by the development of on the fly OTF mapping at Mopra in 2003 4 This effort was spearheaded by Tony Wong and Ned Ladd with substantial contributions from Michael Kesteven Warwick Wilson and Mark Calabretta all at ATNF OTF mapping allows for large regions with bright emission to be mapped much faster than with traditional point and shoot techniques Weak emission can be mapped using repeated coverages although then the improvement in observing efficiency is not as pronounced Significant OTF mapping projects began at Mopra in 2004 with the mapping of the RCW 106 Galactic molecular cloud complex by the UNSW team Delta Quadrant Survey Jürgen Ott initiated what would become the first MAGMA observations with the MX002 project LMC molecular ridge in 2005 May A major boost to the project was provided by the receiver and correlator upgrades in 2005 especially the development of the MOPS spectrometer By late 2005 the core team of Ott Wong Hughes Muller and Pineda were actively involved in CO mapping of various bright clouds in the LMC and SMC The decision to map a complete flux limited sample of NANTEN clouds in the LMC was not made until late 2007 and most observations had been concluded by 2009 October Scientific Goals What are the basic properties of Giant Molecular Clouds and how are they influenced by their external environment How can the amount of molecular gas be most reliably determined How is the molecular gas related to the atomic gas from which it forms and the young stars that ultimately disperse it How long does it

    Original URL path: http://mmwave.astro.illinois.edu/magma/ (2015-10-10)
    Open archived version from archive


  • 1 line only set resp log echo PROMPT USER TO APPLY LL OR MAKE FURTHER CHANGES echo n Apply these linelengths to the data y set resp log if device null then echo n Flag shadowed and high Tsys data y set std flag log echo echo Flagging high Tsys data uvflag vis uvdata mir tsys tsyslim flagval f echo High Tsys data flagged with uvflag log endif CUSTOM FLAGGING SPECIFIED IN SCRIPT set flagsrc echo flagsrc sed s g set flagsel echo flagsel sed s g set flaglin echo flaglin sed s g set i flagsrc if i 0 then if device null then echo echo n Apply custom flagging y set resp flagsel then set j flagsel while j flaglin then set j flaglin while j 0 if flaglin i all then set extra else set extra line flaglin i endif if flagsrc i all then echo echo Flagging data for all srcs select flagsel i extra tee a log uvflag vis uvdata mir select flagsel i flagval f extra else if flagsrc i then echo echo Flagging data for flagsrc i select flagsel i extra tee a log uvflag vis uvdata mir select source flagsrc i flagsel i flagval f extra endif set i expr i 1 end extract EXTRACT INDIVIDUAL SOURCE DATA echo if mergesrc then echo Extracting data for source into file mergesrc rm rf mergesrc uvcat vis uvdata mir out mergesrc select auto source source set source mergesrc else echo Extracting data for source rm rf source uvcat vis uvdata mir out source select auto source source endif echo Extracting data for phasecals rm rf phasecals uvcat vis uvdata mir out phasecals select auto source phasecals if passcal then echo Extracting data for passcal rm rf passcal uvcat vis uvdata mir out passcal select auto source passcal endif if testcal then echo Extracting data for testcal rm rf testcal uvcat vis uvdata mir out testcal select auto source testcal endif if fluxcal then echo Extracting data for fluxcal rm rf fluxcal uvcat vis uvdata mir out fluxcal select auto source fluxcal endif FLAG EDGE CHANNELS ON SOURCE AND TESTCAL if edge then uvflag vis source flagval f edge edge echo Flagged edge edge channels on source log if testcal then uvflag vis testcal flagval f edge edge echo Flagged edge edge channels on testcal log endif endif echo Exclude hybrid data from phasecals set if necessary if pcalwide 0 then rm rf phasecals wid bwsel vis phasecals out phasecals wid bw pcalwide rm rf phasecals mv phasecals wid phasecals endif Remake the visibility sets if desired if flagredo y then foreach flgsrc source fluxcal phasecals uvcat vis flgsrc out flgsrc tmp options unflagged rm rf flgsrc mv flgsrc tmp flgsrc end endif end flag if passcal then if device null goto dopass echo echo n Calibrate the passband y set resp log echo Used antenna refant as reference for selfcal log echo Edge channels to ignore in each window bpedge log CALIBRATE THE PASSBAND if polyfit 0 polyfit then smamfcal vis passcal refant refant interval 1 edge bpedge options opolyfit polyfit polyfit else mfcal vis passcal refant refant interval 1 edge bpedge endif smagpplt vis passcal options bandpass nofit device bpamp ps cps xaxis chan yrange 0 2 nxy 3 5 if device null gv bpamp ps smagpplt vis passcal options bandpass nofit wrap device bpph ps cps xaxis chan yaxis phase yrange 180 180 nxy 3 5 if device null gv bpph ps PROMPT USER ON WHETHER TO APPLY CALIBRATION if device null then echo echo ENTER COMMENTS FOR LOG set resp log echo echo n Do you wish to apply the passband calibration y set resp log goto end endif endif COPY PASSBAND CALIBRATION TO ALL SOURCES foreach obj source testcal fluxcal phasecals if passcal obj then gpcopy vis passcal out obj options nocal echo Passband gains copied to obj tee a log uvlist vis obj options var full log uvlist tmp grep sdf uvlist tmp sdf1 tmp cut c 10 80 sdf1 tmp gsed s n g sed d s sort uniq sdf2 tmp set delf awk printf 4 2f 1 1e3 sdf2 tmp sed s set nchan grep nchan uvlist tmp sed s nchan awk print 1 set npass gethd in obj nchan0 echo nchan for data bandpass nchan npass if nchan log echo Reference antenna refant log echo Solution interval pcalint min log SOLVE FOR GAINS if apriori 1 then mselfcal vis phcalfile refant refant line wide 1 wide interval pcalint options amp apriori noscale tee mselfcal tmp set phflux grep CalGet mselfcal tmp sed s Flux echo Using apriori flux of phflux for phasecals log else aselfcal vis phcalfile refant refant line wide 1 wide interval pcalint options amp endif puthd in phcalfile senmodel value GSV type ascii gpplt vis phcalfile device gainph ps ps yrange 180 180 nxy 5 3 yaxis phase options wrap if device null gv gainph ps gpplt vis phcalfile device gainamp ps ps yrange 0 4 nxy 5 3 if device null gv gainamp ps echo Mean amplitude gains window wide tee a log gplist vis phcalfile grep Means sed s g tee a log echo these multiply the online values log uvlist vis phcalfile options var full grep jyperka log INSPECT PHASES ON CALIBRATOR uvplt vis phcalfile axis time phase nxy 5 3 line wide 1 wide device calphases ps ps options 2p source yrange 180 180 size 1 8 4 if device null gv calphases ps if device null goto end cal uvamp vis phcalfile device device line wide 1 wide bin 45 1 klam xspause OPTIONAL MAP CALIBRATOR AND CHECK ITS SIZE echo echo n Map the calibrator n set resp imfit1 tmp set bmaj grep Major imfit1 tmp awk print 4 set bmin grep Minor imfit1 tmp awk print 4 echo Gaussian fit to map bmaj arcsec x bmin arcsec tee a log imfit in phasecals beam region arcsec box 15 15 15 15 object gaussian imfit2 tmp set

    Original URL path: http://mmwave.astro.illinois.edu/sting/scripts/ccalib.csh.txt (2015-10-10)
    Open archived version from archive


  • csh file c0104I 8D 115NGC4254 2 miriad source ngc4254 phasecals 3c273 testcal 3c274 fluxcal mars passcal 3c273 obsgrade B wide 4 restfreq 115 2712 edge 2 refant 9 pcalint 4 flagsrc ngc4254 flagsel ant 13 time 5 43 5 54

    Original URL path: http://mmwave.astro.illinois.edu/sting/sample/N4254_D1.csh.txt (2015-10-10)
    Open archived version from archive


  • ocircle arcsec arcsec 7 no 39 08 22 56 28 ocircle arcsec arcsec 8 no 52 11 0 00 28 ocircle arcsec arcsec 9 no 26 05 0 00 28 ocircle arcsec arcsec 10 no 0 00 0 00 28 ocircle arcsec arcsec 11 no 26 05 0 00 28 ocircle arcsec arcsec 12 no 52 11 0 00 28 ocircle arcsec arcsec 13 no 39 08 22 56 28

    Original URL path: http://mmwave.astro.illinois.edu/sting/point19.olay (2015-10-10)
    Open archived version from archive



  •